
MapReduce 1

IEMS5730 Spring 2022

MapReduce and Related
Systems

Prof. Wing C. Lau
Department of Information Engineering

wclau@ie.cuhk.edu.hk

MapReduce 2

Acknowledgements
¢ The slides used in this chapter are adapted from the

following sources:
l “Data-Intensive Information Processing Applications,” by Jimmy Lin,

University of Maryland.
-

l CS246 Mining Massive Data-sets, by Jure Leskovec, Stanford
University.

l “Data Management in the Cloud – Advanced Topics in Databases,”
by Saake, Schallehn, Mohammad of OvGU, Summer 2011.

l Introduction to Advanced Computing Platform for Data Analysis, by
Ruoming Jin, Kent University.

l “Intro To Hadoop” in UCBerkeley i291 - Analyzing BigData with
Twitter, by Bill Graham, Twitter.

¢ All copyrights belong to the original authors of the material.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0
United States. See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

MapReduce 3

How do we scale-up for
Web-Scale Information Analytics ?

MapReduce 4

Divide and Conquer

“Work”

w1 w2 w3

r1 r2 r3

“Result”

“worker” “worker” “worker”

Partition

Combine

MapReduce 5

Parallelization Challenges
¢ How do we assign work units to workers?

¢ What if we have more work units than workers?

¢ What if workers need to share partial results?

¢ How do we aggregate partial results?

¢ How do we know all the workers have finished?

¢ What if workers die?

What is the common theme of all of these problems?

MapReduce 6

Common Theme?
¢ Parallelization problems arise from:

l Communication between workers (e.g., to exchange state)
l Access to shared resources (e.g., data)

¢ Thus, we need a synchronization mechanism

MapReduce 7Source: Ricardo Guimarães Herrmann

MapReduce 8

Managing Multiple Workers
¢ Difficult because

l We don’t know the order in which workers run
l We don’t know when workers interrupt each other
l We don’t know the order in which workers access shared data

¢ Thus, we need:
l Semaphores (lock, unlock)
l Conditional variables (wait, notify, broadcast)
l Barriers

¢ Still, lots of problems:
l Deadlock, livelock, race conditions...
l Dining philosophers, sleeping barbers, cigarette smokers...

¢ Moral of the story: be careful!

MapReduce 9

Common Tools to facilitate
Parallel Programming

¢ Programming models
l Shared memory (pthreads)
l Message passing (MPI)

¢ Design Patterns
l Master-slaves
l Producer-consumer flows
l Shared work queues

Message Passing

P1 P2 P3 P4 P5

Shared Memory

P1 P2 P3 P4 P5

M
em

or
y

master

slaves

producer consumer

producer consumer

work queue

MapReduce 10

Where the rubber meets the road
¢ Concurrency is difficult to reason about

¢ Concurrency is even more difficult to reason about
l At the scale of datacenters (even across datacenters)
l In the presence of failures
l In terms of multiple interacting services

¢ Not to mention debugging…

¢ The reality:
l Lots of one-off solutions, custom code
l Write you own dedicated library, then program with it
l Burden on the programmer to explicitly manage everything

MapReduce 11Source: Wikipedia (Flat Tire)

MapReduce 12Source: MIT Open Courseware

MapReduce 13Source: MIT Open Courseware

MapReduce 14Source: Harper’s (Feb, 2008)

MapReduce 15

What’s the point?
¢ It’s all about the right level of abstraction

l The von Neumann architecture has served us well, but is no longer
appropriate for the multi-core/cluster environment

¢ Hide system-level details from the developers
l No more race conditions, lock contention, etc.

¢ Separating the what from how
l Developer specifies the computation that needs to be performed
l Execution framework (“runtime”) handles actual execution

The datacenter is the computer!

MapReduce 16

“Big Ideas”
¢ Scale “out”, not “up”

l Limits of SMP and large shared-memory machines

¢ Move processing to the data
l Cluster have limited bandwidth

¢ Process data sequentially, avoid random access
l Seeks are expensive, disk throughput is reasonable

¢ Seamless scalability
l From the mythical man-month to the tradable machine-hour

MapReduce 17

Computational Model for
Web-scale Information Processing:

MapReduce

MapReduce 18

Google MapReduce
¢ Framework for parallel processing in large-scale shared-nothing

architecture

¢ Developed initially (and patented) by Google to handle Search
Engine’s webpage indexing and page ranking in a more
systematic and maintainable fashion

¢ Why NOT using existing Database (DB)/ Relational Database
Management Systems (RDMS) technologies?

Mismatch of Objectives
l DB/ RDMS were designed for high-performance transactional processing

to support hard guarantees on consistencies in case of MANY
concurrent (often small) updates, e.g. ebanking, airline ticketing ;
DB Analytics were “secondary” functions added on later ;

l For Search Engines, the documents are never updated (till next Web
Crawl) and they are Read-Only ; It is ALL about Analytics !

l Import the webpages, convert them to DB storage format is expensive
l The Job was simply too big for prior DB technologies !

MapReduce 19

Typical BigData Problem
¢ Iterate over a large number of records

¢ Extract something of interest from each

¢ Shuffle and sort intermediate results

¢ Aggregate intermediate results

¢ Generate final output

Key idea: provide a functional abstraction for
these two operations

Map

Reduce

(Dean and Ghemawat, OSDI 2004)

MapReduce 20

g g g g g

f f f f fMap

Fold

Roots in Functional Programming

MapReduce 21

MapReduce
¢ Programmers specify two functions:

map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’’, v’’>*
l All values with the same key are sent to the same reducer
l <a,b>* means a list of tuples in the form of (a,b)

¢ The execution framework handles everything else…

MapReduce 22

mapmap map map

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3

MapReduce 23

MapReduce: Word Counting

The crew of the space
shuttle Endeavor recently
returned to Earth as
ambassadors, harbingers
of a new era of space
exploration. Scientists at
NASA are saying that the
recent assembly of the
Dextre bot is the first step
in a long-term space-
based man/mache
partnership. '"The work
we're doing now -- the
robotics we're doing -- is
what we're going to need
……………………..

Big Document

(crew, 1)
(crew, 1)

(space, 1)
(the, 1)
(the, 1)
(the, 1)

(shuttle, 1)
(recently, 1)

…

(crew, 2)
(space, 1)

(the, 3)
(shuttle, 1)
(recently, 1)

…

MAP:
Read input and
produces a set

of key-value
pairs

Group by key:
Collect all pairs
with same key

Reduce:
Collect all

values
belonging to the
key and output

(key, value)

Provided by the
programmer

Provided by the
programmer

(key, value)(key, value)

Se
qu

en
tia

lly
 re

ad
 th

e
da

ta
O

nl
y

se

qu
en

tia
l

 r
ea

ds(The, 1)
(crew,1)
(of, 1)
(the,1)

(space,1)
(shuttle,1)

(Endeavor,1)
(recently,1)
(returned,1)

(to,1)
(Earth,1)

(as,1)
(ambassadors,1)

…..

MapReduce 24

“Hello World”: Pseudo-code for Word Count

Map(String docid, String text):
// docid: document name, i.e. the input key ;
// text: text in the document, i.e. the input value

for each word w in text:
EmitIntermediate(w, 1);

Reduce(String term, Iterator<Int> Ivalues):
// term: a word, i.e. the intermediate key, also happens to be the output key here ;
// Ivalues: an iterator over counts (i.e. gives the list of intermediate values from Map)

int sum = 0;
for each v in Ivalues:

sum += v ;
Emit(term, sum);

// The above is pseudo-code only ! True code is a bit more involved: needs to define
how the input key/values are divided up and accessed, etc).

MapReduce 25

“Hello World” Task for MapReduce:
Word Counting

¢ Unix/Linux shell command to Count occurrences of words
in a file named doc.txt:
l words(doc.txt) | sort | uniq -c

• where words takes a file and outputs the words in it, one word per line
• “uniq” stands for unique, is a true Unix command ; see its manpage

to find out what “uniq –c” does

¢ The above “Unix/Linux-shell command” captures the
essence of MapReduce
l Great thing is that it is naturally parallelizable

¢ Compare to the “Hadoop Streaming” Command of:

source: http://hadoop.apache.org/docs/current/hadoop-streaming/HadoopStreaming.html#How_Streaming_Works

1/26/22

MapReduce 26

MapReduce
¢ Programmers specify two functions:

map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’’, v’’>*
l All values with the same key are sent to the same reducer

¢ The execution framework handles everything else…

What’s “everything else”?

MapReduce 27

MapReduce “Runtime”
¢ Handles scheduling

l Assigns workers to map and reduce tasks
¢ Handles “data distribution”

l Moves processes to data

¢ Handles synchronization
l Gathers, sorts, and shuffles intermediate data

¢ Handles errors and faults
l Detects worker failures and restarts

¢ Everything happens on top of a distributed File System (later)

MapReduce 28

MapReduce
¢ Programmers specify two functions:

map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’’, v’’>*
l All values with the same key are reduced together

¢ The execution framework handles everything else…
¢ Not quite…usually, programmers also specify:

partition (k’, number of partitions) → partition for k’
l Often a simple hash of the key, e.g., hash(k’) mod n
l Divides up key space for parallel reduce operations
l Sometimes useful to override the hash function:

• e.g., hash(hostname(URL)) mod R ensures URLs from a host
end up in the same output file

combine (k’, v’) → <k’, v’>*
l Mini-reducers that run in memory after the map phase
l Used as an optimization to reduce network traffic
l Works only if Reduce function is Commutative and Associative

MapReduce 29

combinecombine combine combine

ba 1 2 c 9 a c5 2 b c7 8

partition partition partition partition

mapmap map map

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

c 2 3 6 8

MapReduce 30

Two more details…
¢ Barrier between map and reduce phases

l But we can begin copying intermediate data earlier

¢ Keys arrive at each reducer in sorted order
l No enforced ordering across reducers
l For tuples with the same intermediate key, Hadoop does not

guarantee the ordering of values are in sorted order when
presenting to the reducer

• In contrast, Google’s MapReduce Implementation supports the
“secondary sorting” option to make tuples with same intermediate
keys are sorted by their values. One can emulate such behavior in
Hadoop by using the “value-to-key” trick and a customized partitioner
and sorter.

MapReduce 31

Example 2: Inverted Index (for a Search Engine)

MapReduce 32

Inverted Index with MapReduce
¢ Mapper:

l Key: PageName // URL of webpage
l Value: Text // text in the webpage
foreach word w in Text

EmitIntermediate(w, PageName)

¢ Reducer:
l Key: word
l Values: all URLs for word
l … Just the Identity function

MapReduce 33

Inverted Index Data flow w/ MapReduce

MapReduce 34

More Sample Use of
MapReduce

MapReduce 35

More MapReduce Example: Host size
¢ Suppose we have a large web corpus
¢ Look at the metadata file

l Lines of the form: (URL, size, date, …)

¢ For each host, find the total number of bytes
l That is, the sum of the page sizes for all URLs from that

particular host

¢ Other examples:
l Link analysis and graph processing
l Machine Learning algorithms
l More later in the course…

1/26/22

MapReduce 36

Another Example: Language Model
¢ Statistical machine translation:

l Need to count number of times every 5-word sequence
occurs in a large corpus of documents

¢ With MapReduce:
l Map:

• Extract (5-word sequence, count) from document
l Reduce:

• Combine the counts

1/26/22

MapReduce 37

Example: Join By Map-Reduce

¢ Compute the natural join R(A,B) ⋈ S(B,C)

¢ R and S are each stored in files

¢ Tuples are pairs (a,b) or (b,c)

1/26/22

A B
a1 b1

a2 b1

a3 b2

a4 b3

B C
b2 c1

b2 c2

b3 c3

A C
a3 c1

a3 c2

a4 c3

R
S

⋈ =

MapReduce 38

Map-Reduce Join

¢ Use a hash function h from B-values to 1...k

¢ A Map process turns:
l Each input tuple R(a,b) into key-value pair (b,(a,R))
l Each input tuple S(b,c) into (b,(c,S))

¢ Map processes send each key-value pair with key b to
Reduce process h(b)
l Hadoop does this automatically; just tell it what k is.

¢ Each Reduce process matches all the pairs (b,(a,R)) with
all (b,(c,S)) and outputs (a,b,c).

1/26/22

MapReduce 39

Re-partition Join

MapReduce 40

Replicated Join

MapReduce 41

Composite Join

MapReduce 42

MapReduce can refer to…
¢ The programming model

¢ The execution framework (aka “runtime”)

¢ The specific implementation

Usage is usually clear from context!

MapReduce 43

MapReduce Implementations
¢ Google has a proprietary implementation in C++

l Bindings in Java, Python

¢ Hadoop is an open-source implementation in Java
l Development led by Yahoo, used in production
l Now an Apache project
l Rapidly expanding software ecosystem

¢ Lots of custom research implementations
l For GPUs, cell processors, etc.

MapReduce 44

split 0
split 1
split 2
split 3
split 4

worker

worker

worker

worker

worker

Master

User
Program

output
file 0

output
file 1

(1) submit

(2) schedule map (2) schedule reduce

(3) read
(4) local write

(5) remote read
(6) write

Input
files

Map
phase

Intermediate files
(on local disk)

Reduce
phase

Output
files

Adapted from (Dean and Ghemawat, OSDI 2004)

MapReduce 45

Data Flow
¢ Input and final output are stored on a distributed file

system (FS):
l Scheduler tries to schedule map tasks “close” to physical storage

location of input data

¢ Intermediate results are stored on local FS
of Map and Reduce workers

¢ Output is often input to another
MapReduce task

1/26/22

MapReduce 46

Coordination: Master
¢ Master node takes care of coordination:

l Task status: (idle, in-progress, completed)
l Idle tasks get scheduled as workers become available
l When a map task completes, it sends the master the location and

sizes of its R intermediate files, one for each reducer
l Master pushes this info to reducers

¢ Master pings workers periodically to detect failures

1/26/22

MapReduce 47

Dealing with Failures
¢ Map worker failure

l Map tasks completed (Why ??) or in-progress at
worker are reset to idle

l Reduce workers are notified when task is rescheduled on another
worker

¢ Reduce worker failure
l Only in-progress tasks are reset to idle
l Reduce task is restarted

¢ Master failure
l MapReduce task is aborted and client is notified

1/26/22

MapReduce 48

How many Map and Reduce jobs?

¢ M map tasks, R reduce tasks

¢ Rule of a thumb:
l Make M much larger than the number of nodes in the cluster
l One DFS chunk (64 Mbyte each by default) per mapper is common
l Improves dynamic load balancing and speeds up recovery from

worker failures

¢ Usually R is smaller than M
l Because output is spread across R files

1/26/22

MapReduce 49

Task Granularity & Pipelining

¢ Fine granularity tasks: # of map tasks >> machines
l Minimizes time for fault recovery
l Can do pipeline shuffling with map execution
l Better dynamic load balancing
l e.g. For 2000 processors, M = 200,000 ; R = 5000

1/26/22

MapReduce 50

Refinements: Backup Tasks
¢ Problem

l Slow workers, the so-called Stragglers, significantly lengthen the
job completion time:

• Other jobs on the machine
• Bad disks
• Weird things

¢ Solution
l Near end of phase, spawn backup copies of tasks

• Whichever one finishes first “wins”

¢ Effect
l Dramatically shortens job completion time

1/26/22

MapReduce 51

How do we get data to the workers?

Compute Nodes

NAS

SAN

What’s the problem here?

MapReduce 52

Distributed File System
¢ Don’t move data to workers… move workers to the data!

l Store data on the local disks of nodes in the cluster
l Start up the workers on the node that has the data local

¢ Why?
l Not enough RAM to hold all the data in memory
l Disk access is slow, but disk throughput is reasonable

¢ A distributed file system is the answer
l GFS (Google File System) for Google’s MapReduce
l HDFS (Hadoop Distributed File System) for Hadoop
l Non-starters

• Lustre (high bandwidth, but no replication outside racks)
• Gluster (POSIX, more classical mirroring, see Lustre)
• NFS/AFS/whatever - doesn’t actually parallelize

MapReduce 53

GFS: Assumptions
¢ Commodity hardware over “exotic” hardware

l Scale “out”, not “up”

¢ High component failure rates
l Inexpensive commodity components fail all the time

¢ “Modest” number of huge files
l Multi-gigabyte files are common, if not encouraged

¢ Files are write-once, mostly appended to
l Perhaps concurrently

¢ Large streaming reads over random access
l High sustained throughput over low latency

GFS slides adapted from material by (Ghemawat et al., SOSP 2003)

MapReduce 54

GFS: Design Decisions
¢ Files stored as chunks

l Fixed size (64MB)

¢ Reliability through replication
l Each chunk replicated across 3+ chunkservers

¢ Single master to coordinate access, keep metadata
l Simple centralized management

¢ No data caching
l Little benefit due to large datasets, streaming reads

¢ Simplify the API
l Push some of the issues onto the client (e.g., data layout)

HDFS = GFS clone (same basic ideas)

MapReduce 55

Google File System

• Chunk servers hold blocks of the file (64MB per chunk)
• Replicate chunks (chunk servers do this autonomously). More bandwidth

and fault tolerance
• Master distributes, checks faults, rebalances (Achilles heel)
• Client can do bulk read / write / random reads

Ghemawat, Gobioff, Leung, 2003

MapReduce 56

Google File System /HDFS
1. Client requests chunk from master

2. Master responds with replica
location

3. Client writes to replica A

4. Client notifies primary replica

5. Primary replica requests data from
replica A

6. Replica A sends data to Primary
replica (same process for replica B)

7. Primary replica confirms write to
client

only one write needed

• Master ensures nodes are live
• Chunks are checksummed
• Can control replication factor for hotspots / load balancing
• Deserialize master state by loading data structure as flat file

from disk (fast) ; See Section 4.1 of GFS SOSP2003 paper for details

single master

MapReduce 57

From GFS to HDFS
¢ Terminology differences:

l GFS master = Hadoop namenode
l GFS chunkservers = Hadoop datanodes

¢ Functional differences:
l Initially, no file appends in HDFS (the feature has been added recently)

• http://blog.cloudera.com/blog/2009/07/file-appends-in-hdfs/
• http://blog.cloudera.com/blog/2012/01/an-update-on-apache-hadoop-1-0/

l HDFS performance is (likely) slower

For the most part, we’ll use the Hadoop terminology…

MapReduce 58Adapted from (Ghemawat et al., SOSP 2003)

(file name, block id)

(block id, block location)

instructions to datanode

datanode state
(block id, byte range)

block data

HDFS namenode

HDFS datanode

Linux file system

…

HDFS datanode

Linux file system

…

File namespace
/foo/bar

block 3df2

Application

HDFS Client

HDFS Architecture

MapReduce 59

Namenode Responsibilities
¢ Managing the file system namespace:

l Holds file/directory structure, metadata, file-to-block mapping,
access permissions, etc.

¢ Coordinating file operations:
l Directs clients to datanodes for reads and writes
l No data is moved through the namenode

¢ Maintaining overall health:
l Periodic communication with the datanodes
l Block re-replication and rebalancing
l Garbage collection

¢ Namenode can be Archille’s heel – Single point of failure or
bottleneck of scalability for the entire FS:
l Need to have a Backup Namenode HDFS (or Master in GFS)
l Compared to the fully-distributed approach in Ceph

MapReduce 60

Putting everything together…

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

namenode

namenode daemon

job submission node

jobtracker

MapReduce 61

MapReduce is good for…

¢ Embarrassingly Parallel algorithms

¢ Summing, grouping, filtering, joining

¢ Off-line batch jobs on massive data sets

¢ Analyzing an entire large data set
l New higher level languages/systems have been developed

to further simplify data processing using MapReduce
• Declarative description (NoSQL type) of processing task

can be translated automatically to MapReduce functions
• Control flow of processing steps (Pig)

MapReduce 62

MapReduce is OK, (and only ok) for…

¢ Iterative jobs (e.g. Graph algorithms like
Pagerank)
l Each iteration must read/write data to disk
l I/O and latency cost of an iteration is high

1/26/22

MapReduce 63

MapReduce is NOT good for…

¢ Jobs that need shared state/ coordination
l Tasks are shared-nothing
l Shared-state requires scalable state store

¢ Low-latency jobs

¢ Jobs on small datasets

¢ Finding individual records

For some of these, we will introduce alternative
computational models/ platforms, e.g. GraphLab, Spark, later
in the course

1/26/22 Jure Leskovec, Stanford CS246: Mining Massive Datasets,
http://cs246.stanford.edu

MapReduce 64

Practical Limits of Hadoop1.0
v Scalability

v Maximum Cluster Size – 4000 Nodes
v Maximum Concurrent Tasks – 40000
v Coarse synchronization in Job Tracker

v Single point of failure
v Failure kills all queued and running jobs
v Jobs need to be resubmitted by users

v Restart is very tricky due to complex state

MapReduce 65

Scalability/Flexibility Issues of the
MapReduce/ Hadoop 1.0 Job Scheduling/Tracking

¢ The MapReduce Master node (or Job-tracker in Hadoop 1.0)
is responsible to monitor the progress of ALL tasks of all jobs
in the system and launch backup/replacement copies in case
of failures
l For a large cluster with many machines, the number of tasks to be

tracked can be huge
=> Master/Job-Tracker node can become the performance bottleneck

¢ Hadoop 1.0 platform focuses on supporting MapReduce as its
only computational model ; may not fit all applications

¢ Hadoop 2.0 introduces a new resource management/ job-
tracking architecture, YARN [1], to address these problems

[1] V.K. Vavilapalli, A.C.Murthy, “Apache Hadoop YARN: Yet Another Resource Negotiator,”
ACM Symposium on Cloud Computing 2013.

MapReduce 66

YARN for Hadoop 2.0

¢ YARN (Yet Another Resource Negotiator) provides a
resource management platform for Cluster to support
general Distributed/Parallel Applications/Frameworks
beyond the MapReduce computational model.

V. K. Vavilapalli, A. C. Murthy, “Apache Hadoop YARN: Yet Another Resource Negotiator”, in
ACM Symposium on Cloud Computing (SoCC) 2013.

MapReduce 67

A Big Data Processing Stack with YARN
(more later)

MapReduce 681/26/22 Jure Leskovec, Stanford CS246: Mining Massive Datasets,
http://cs246.stanford.edu

¢ Multiple frameworks (Applications) can run on top of YARN to share a Cluster, e.g.
MapReduce is one framework (Application), MPI, or Storm are other ones.

¢ YARN splits the functions of JobTracker into 2 components: resource allocation
and job-management (e.g. task-tracking/ recovery):
l Upon launching, each Application will have its own Application Master (AM), e.g. MR-AM in the figure

above is the AM for MapReduce, to track its own tasks and perform failure recovery if needed
l Each AM will request resources from the YARN Resource Manager (RM) to launch the Application’s

jobs/tasks (Containers in the figure above) ;
l The YARN RM determines resource allocation across the entire cluster by communicating with/

controlling the Node Managers (NM), one NM per each machine.

YARN for Hadoop 2.0

MapReduce 69

Besides the Computational Model:
Typical Architecture for

Big Data Processing Systems

MapReduce 70

Typical Architecture of Cloud Computing/
Big Data Processing Systems

MapReduce 71

Typical Architecture: Different Component Systems
for various Services and Functionalities

MapReduce 72

Typical Architecture: Different Component Systems
for various Services and Functionalities

e.g. HiveQL of Hive (Facebook),
BigSQL (IBM), Apache Drill,
Cloudera Impala ; Pig (Yahoo);
Spark SQL, DryadLINQ,
other NoSQL query languages
(NoSQL = Not-only-SQL)

e.g. Hadoop/ MapReduce,
GraphLab (CMU/UWash),
Spark (Berkeley), Storm/Heron
(Twitter), Dryad (Microsoft), TeZ,
Pregel/ Giraph (Apache), Flink

e.g. BigTable(Google)/ Hbase(open)
Cassandra(Facebook),
SimpleDB, DynamoDB (Amazon)

Distributed FileSystems:
e.g.HDFS, GFS, ceph
Cloud-based Data-Store Service/System:
e.g. Amazon S3, EBS, OpenStack Swift ,
Amazon Dynamo <key,value> store

MapReduce 73

Architecture Sample 1: The Google-way (circa
~2002)

MapReduce 74

Google’s BigTable
¢ Fast and Large-scale (PB range) Database Management

System (DBMS) for Google applications and services

¢ Data Model = Sparse, Distributed Multi-dimensional
Sorted Map,

l Think of it as a Distributed, Super-Large Spreadsheet split over a
huge cluster of servers

l Adjacent rows grouped to form a Tablet, which is hosted in the
same server

l Row range for each Tablet is dynamically partitioned for Load-
balancing

l Read/Write under a single Row key are atomic

¢ Distributed, persistent lock/ name service from Chubby

¢ Rely on GFS to store data and logs

¢ Commonly used as Data Input source and Output target for
MapReduce programs ;

MapReduce 75

BigTable Data Model

More detailed coverage on BigTable the IERG4330 course !

MapReduce 76

Google Applications using BigTable

¢ Google Maps

¢ Google Book Search

¢ Google Earth

¢ Google Analytics

¢ Blogger.com

¢ YouTube

¢ Gmail

¢ …

MapReduce 77

Google Applications using BigTable (cont’d)

MapReduce 78

Architecture Sample 2: The Hadoop-way
(e.g. Yahoo circa ~ 2008)

MapReduce 791/26/22 Jure Leskovec, Stanford CS246: Mining Massive Datasets,
http://cs246.stanford.edu

Hadoop 1.0 vs. Hadoop 2.0 Ecosystem

MapReduce 80

HBase
¢ Can be considered as the Open-source version of BigTable

¢ Semi-structured data storage

¢ Developed initially by Powerset (an NLP company)

¢ Now part of Apache’s (open-source) Hadoop project
l Like BigTable, HBase tables can serve as Data input/output store

for MapReduce jobs run in Hadoop
l Based on HDFS

¢ Access via Java API, REST and others

¢ Used by, e.g. Facebook’s Messaging Platform

MapReduce 81

Apache Cassandra
¢ BigTable data model running on an Amazon Dynamo-like

(P2P) infrastructure

¢ Developed initially by Facebook

¢ Now part of Apache Software Foundation (Open-source)

¢ Differences w.r.t. Hbase
l Standalone system
l Not based on HDFS
l Storage approach similar to Distributed Hash Table (DHT)
l Tunable consistency levels

MapReduce 82

Apache Hive
¢ Data warehouse infrastructure built on top of Hadoop

¢ Initially developed by Facebook

¢ Now part of Apache Software Foundation (Open-source)

¢ Use to analyze large datasets stored in
l HDFS
l Amazon S3

¢ Support SQL-like query language called HiveSQL

MapReduce 83

Beyond Hadoop/MapReduce:
Another Main-stream Big Data Processing Framework
¢ Spark & Berkeley Data Analytic Stack (BDAS) by UC Berkeley

Reference: https://amplab.cs.berkeley.edu/software/

MapReduce 84

Alternative:
Relational Database Management System (RDMS)

as a Service

MapReduce 85

MapReduce vs. Parallel RDBMS

¢ MapReduce
+ Very Scalable, Fault-tolerant and Automatic Load-balancing

+ Operates well in Heterogeneous Clusters

- Writing Map/Reduce jobs is more complicated than writing SQL queries

- Performance largely depends on the skill of the programmer

¢ Parallel RDBMS

+ Usually very good and consistent performance

+ Flexible and proven interface (SQL)

+ SQL-queries are automatically optimized for transaction performance

- Scaling is rather Limited (10’s of nodes)

- Does NOT work well in Heterogeneous Clusters

- Not very Fault-Tolerant

MapReduce 86

MapReduce vs. Parallel RDBMS

MapReduce 87

SQL vs. MapReduce

MapReduce 88

SQL vs. MapReduce (cont’d)

MapReduce 89

NoSQL (Not-only SQL) vs. RDBMS
¢ RDBMS provides too much:

l ACID (Atomicity, Consistency, Isolation, Durability) transactions
l Complex Query Language
l Lots and lots of knobs to turn

¢ RDBMS provides too little:
l Lack of (cost-effective) scalability, availability
l Not enough schema/data-type flexibility

¢ NoSQL
l Lots of optimization and tuning possible for Analytics
l Flexible programming model

¢ NoSQL can borrow many good ideas from RDBMS
l Declarative Language
l Parallelization and Optimization Techniques
l Value of Data Consistency

Source: Raghu Ramakrishnan of Microsoft

MapReduce 90

Recap
¢ MapReduce – A Computational Model for Big Data

Processing

¢ The MapReduce Runtime, GFS/ HDFS

¢ Sample Applications for MapReduce

¢ Typical Architectures for Big Data Processing Systems

MapReduce 91

Further Reading
¢ Jeffrey Dean and Sanjay Ghemawat: MapReduce:

Simplified Data Processing on Large Clusters
http://research.google.com/archive/mapreduce.html

¢ Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung:
The Google File System
http://research.google.com/archive/gfs.htmlers/gfs.html

¢ Siba Mohammad, Sebastian Breb, Eike Schallehn, “Cloud
Data Management: A Short Overview and Comparison of
Current Approaches,” 24th GI-Workshop on Foundations of
Databases, May 2012. slides available at:
http://wwwiti.cs.uni-magdeburg.de/iti_db/lehre/advdb/cloud.pdf

¢ Hadoop Application Architectures 1st Edition, by Mark
Grover, Ted Malaska, Jonathan Seidman and Gwen
Shapira, Publisher: O’Reilly Media, July 2015.1/26/22

http://labs.google.com/papers/gfs.html

